Keynote 5 | Sep. 10, 14:15 CEST (08:15 NYC, 20:15 SGP)

Development and integration of AM lattice structures to reliable technological solutions


Prof. Giorgio De Pasquale, Dept. of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy

Session Chair
Paulo Jorge Bártolo | Chair in Advanced Manufacturing, University of Manchester, UK


Abstract
Additive manufacturing is allowing since several years the fabrication of metal lattice structures with high resolution, especially thanks to the increasing performances of DMLS (direct metal laser sintering) processes. The mechanical behavior of lattice structures depends primarily to the parent material, however it can be significantly modified or adjusted by means of the design of single cell and the 3D cells stacking. The most known advantages associated to engineered cellular structures are lightweight and thermal exchange, although advanced functionalities are appearing in the fields of materials joints and energy absorption. The applications of these properties are wide and include biomechanics/bioengineering, micromechanics, human-machines interfaces (HMI), sport and traditional mechanics (machines, vehicles, plants, etc.) The most recent projects released by the “Smart Structures and Systems” Lab. include the AM processes optimization for qualified and repeatable production of lattices at industrial quality level, the design methodologies linked to reduced-order modeling, the testing for reliability, and the development of patented technologies exploiting metal AM lattice structures.


Professor Giorgio De Pasquale is Associate Professor of Machines Design at Politecnico di Torino (Italy), Dept. of Mechanics and Aerospace, since 2016. He has about 15 years of research experience in the field of “Smart Structures and Systems” (SSS Lab), which includes micromechanics/MEMS, human-machines interfaces, wearable systems, energy harvesting and additive manufacturing. As visiting researcher at MIT (Massachusetts Institute of Technology) and USF (University of South Florida) between 2009 and 2013, he worked on low-frequency MEMS inertial sensors and on self-powered sensing glove. He has active projects with research institutions in USA, Japan and Europe. He is involved in industrial R&D and market-driven products development. He got ASME, SAPIO and MESAP Awards in 2010/11, and he is author of about 80 scientific papers and of about 15 patents.